Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Rev. cuba. invest. bioméd ; 40(2): e570, 2021. graf
Article in Spanish | LILACS, CUMED | ID: biblio-1347461

ABSTRACT

Introducción: El panorama demográfico en el mundo está cambiando. La población mayor de 60 años es el segmento que está creciendo más rápidamente y en el que las enfermedades del tejido óseo se presentan con más frecuencia, lo que aumenta la demanda de materiales y tecnologías apropiadas para restaurar estos tejidos. Objetivo: Analizar la información que se ha generado sobre el desarrollo de biomateriales compuestos para la reparación ósea, con énfasis en la identificación de las tecnologías emergentes basadas en el uso del campo electromagnético, sus aplicaciones y potencialidades. Métodos: Se consultaron trabajos científicos publicados en libros, revistas, patentes y tesis. El 80 por ciento de la documentación seleccionada pertenece al periodo 2010-2019. Análisis e integración de la información: Los métodos identificados fueron clasificados en cinco grupos: electrodeposición química, ya sea por electrólisis, electroforesis o síntesis electroforética in situ; electroporación; electrohilado; control magnético distal y bioestimulación electromagnética de células y tejidos, directamente o por la introducción de dispositivos que convierten la energía electromagnética en energía mecánica. Conclusiones: Estos métodos permiten la conformación de matrices celulares y acelulares compuestas y, además, dispositivos bioestimuladores con control de los parámetros de construcción y acción, de tal manera, que se logran procesos con mayor grado de reproducibilidad y a la medida de los requerimientos específicos para cada paciente(AU)


Introduction: The global demographic panorama is changing. The population aged over 60 years is the fastest growing segment, as well as the one where bone tissue diseases are most common, increasing the demand of appropriate materials and technologies to restore those tissues. Objective: To analyze the information so far generated about the development of composite biomaterials for bone repair, with an emphasis on the identification of emerging technologies based on the use of the electromagnetic field, its applications and potential. Methods: An analysis was performed of scientific papers published in books, journals, patents and theses. Of the documentation selected, 80 percent was from the period 2010-2019. Data analysis and integration: The methods identified were classified into five groups: chemical electrodeposition, be it by in situ electrophoretic synthesis, electrolysis or electrophoresis; electroporation; electrospinning; distal magnetic control and electromagnetic biostimulation of cells and tissues, either directly or incorporating devices which convert electromagnetic energy into mechanical energy. Conclusions: These methods permit the conformation of composite cellular and acellular matrices as well as biostimulator devices controlling construction and action parameters in such a way that the processes obtained display greater reproducibility and are more in keeping with the specific requirements of each patient(AU)


Subject(s)
Humans , Biocompatible Materials/analysis , Electric Stimulation/methods , Electromagnetic Fields
2.
West Indian med. j ; 67(1): 60-68, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-1045809

ABSTRACT

ABSTRACT Objective: To investigate the mechanical properties of various mass fractions of Nylon 6 (N6), polymethyl-metacrylate (PMMA) and polyvinylidene-difluoride (PVDF) nanofibres reinforced bisphenol A-glycidyl methacrylate (Bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) based dental composite resins and to evaluate the penetration characteristics of the nanofibres into the resin. Methods: Nylon 6, PMMA and PVDF nanofibres were produced using the electrospinning method. The morphologies of the fabricated nanofibres were evaluated with a scanning electron microscope (SEM). The nanofibres were placed into the resin matrix at different mass fractions (3%, 5% and 7%). The three-point bending test was applied to nanofibre-reinforced dental composite resins and neat resin specimens. The flexural strength (Fs), flexural modulus (EY) and work of fracture (WOF) of the groups were found. The analysis of variance was used for the statistical analysis of the acquired data. Tukey 's multiple test was performed to compare the Fs, EY and WOF means. Fractured surfaces of the samples were observed by SEM, and fracture morphologies were evaluated. Results: Polymethyl-metacrylate nanofibres dissolved in the matrix, and a polymer alloy took place in the matrix. Fibre pull-out and fibre bridging mechanisms were observed by SEM images of the N6 and PVDF nanofibre-reinforced dental composites. The produced nanofibres enhanced the mechanical properties of the dental composite resins. Conclusion: Fibre pull-out and fibre bridging mechanisms on the fractured surfaces of samples may play a key role in the reinforcement of dental composite resins. However, polymer alloy of PMMA nanofibres increased the mechanical properties of the resin matrix.


RESUMEN Objetivo: Investigar las propiedades mecánicas de resinas compuestas dentales basadas en bisfenol A-diglicidildimetacrilato (Bis-GMA) y dimetacrilato trietilen-glicol (TEGDMA) reforzadas con nanofibras de fracciones de masa de Nylon 6 (N6), polimetilmetacrilato (PMMA) y fluoruro de polivinilideno (PVDF), y evaluar las características de la penetración de las nanofibras en la resina. Métodos: Se produjeron nanofibras de Nylon 6, PMMA y PVDF utilizando el método de electrohilado (electrospinning). Las morfologías de las nanofibras fabricadas fueron evaluadas con un microscopio electrónico de barrido (MEB). Las nanofibras fueron introducidas en la matriz de resina en diferentes fracciones de masa (3%, 5% y 7%). La prueba de flexión de tres puntos fue aplicada a las resinas compuestas dentales reforzadas por nanofibras y a las muestras de resina pura. La resistencia a la flexión (Rf), el módulo de flexión (EY) y el trabajo de fractura (WOF) de los grupos fueron halladas. El análisis de varianza se usó para el análisis estadístico de los datos adquiridos. Se realizó la prueba de comparaciones múltiples de Tukey con el propósito de comparar las medidas de Rf, EY y WOF. Las superficies fracturadas de las muestras fueron observadas mediante un MEB, y se evaluaron las morfologías de fractura. Resultados: Las nanofibras de polimetilmetacrilato se disolvieron en la matriz, y tuvo lugar una aleación de polímeros en la matriz. Los mecanismos de desprendimiento de fibras y puenteo de fibras fueron observados mediante imágenes de MEB de los compuestos dentales reforzados con nanofibras de N6 y PVDF. Las nanofibras producidas realzaron las propiedades mecánicas de las resinas compuestas dentales. Conclusión: Los mecanismos de desprendimiento de fibras y puenteo de fibras en las superficies fracturadas de las muestras pueden desempeñar un papel clave en el reforzamiento de las resinas de los compuestos dentales. Sin embargo, la aleación polimérica de las nanofibras de PMMA aumentó las propiedades mecánicas de la matriz de resina.


Subject(s)
Bisphenol A-Glycidyl Methacrylate , Composite Resins/analysis , Polymethyl Methacrylate , Nanofibers/analysis , Fluorides , Mechanical Tests , Microscopy, Electron, Scanning
3.
Orinoquia ; 21(supl.1): 56-63, jul.-dic. 2017. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1091540

ABSTRACT

Resumen Se estudiaron nanofibras de TiO2/ZnO preparadas por calcinación de fibras precursoras de poli (vinil acetato), isopropóxido de titanio y nano polvo de zinc elaboradas por la técnica de electrohilado. La estructura y la morfología de las nanofibras de TiO2/ZnO y fibras precursoras se caracterizaron por Microscopia Electrónica de Barrido (SEM), Microscopia Electrónica de Barrido de Emisión de Campo equipado con Espectroscopia Dispersiva de Rayos X (FESEM-EDS), Espectroscopia de Infrarrojo con Transformada de Fourier (FTIR) y Difracción de Rayos X (XRD). El análisis XRD mostró la estructura cristalina de los óxidos de titanio (anatasa) y de zinc (wurzita hexagonal), después de calcinar las fibras precursoras a 500°C. Las microfotografías de SEM muestran que tanto las fibras precursoras como las nanofibras forman redes uniformes y buena morfología. Estas nanofibras de dióxido de titanio /óxido de zinc presentan buen área de superficie y diámetros de 200 nm apropiados que podrían ser de aplicación potencial en el campo de energía renovable, en particular, para la fabricación de celdas solares.


Abstract The TiO2 /ZnO nanofibers prepared by the calcination of polyvinyl acetate of precursor fibers, titanium isopropoxide and nano zinc powder produced by the electrospinning technique were studied. The structu-re and morphology of TiO2 /ZnO nanofibers and precursor fibers were characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy coupled to Energy Dispersive X-ray spectroscopy (FESEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR) and XRD (X Ray Diffraction). XRD analysis displayed crystalline structures of titanium oxides (anatase) and zinc (hexagonal wurzite), after calcining the precursor fibers at 500 °C. SEM microphotographs display that both precursor fibers and nanofibers form uniform networks and good morphology. These titanium dioxide / zinc oxide nanofibers get good surface area and appropriate 200 nm diameters which could potentially be applied in the renewable energy field, particularly for solar cells manufacturing.


Resumo Nanofibras de TiO2 /ZnO preparado por calcinação de fibras precursoras de poli (acetato de vinila), isopropóxido de titânio e pó nano de zinco produzidos por eletrofiação técnica estudada. A estrutura e morfologia das nanofibras de TiO2/ ZnO e fibras precursores foram caracterizados por microscopia eletrônica de varredura (SEM), Microscopia eletrônica de varredura de emissão de campo equipada com espectroscopia de raios-X dispersiva (FESEM-EDS), Espectroscopia de Fourier Transform Infrared (FTIR) e difração de raios X (DRX). A análise de XRD mostrou a formação de estruturas de cristal de óxido de titânio (anatase) e zinco (wurtzita hexagonal), depois de fibras precursoras de calcinação a 500 °C. Micrografias mostram que tanto o precursor e fibras nanofibras uniformes formar redes e boa morfologia. Estas nanofibras de dióxido de titanio /óxido de zinco apresentam bom área de superfície e diâmetros de 200 nm apropriados que poderiam ser de aplicativo potencial no campo de energia renovável, em particular, para a fabricação de celas solares.

4.
Rev. mex. ing. bioméd ; 37(1): 7-16, ene.-abr. 2016. tab, graf
Article in English | LILACS-Express | LILACS | ID: lil-789469

ABSTRACT

Abstract The electrospinning device is used in the biomaterials research field nowadays for fabricating nanofibers that can be used for manufacturing artificial skin and muscular tissue, blood vessels (vascular grafts), orthopedic components (bones, cartilages, and ligaments/tendon), and peripheral or central nervous system components. Electrospun nanofibers act as ideal scaffolds for tissue engineering and drug delivery systems because they can mimic the functions of native extracellular matrices. A low cost electrospinning device was designed and built for undergraduate practical learning in the Biomaterials course in the area of Bioengineering at Universidad Autónoma de Baja California, México. The methodology includes 3D CAD designing, manufacturing of the acrylic cabinet, different collectors and the fabrication of poly (vinyl alcohol) nanofibrous scaffolds, in order to validate the functionality of the electrospinning system. The prototype is an affordable device; its cost is 95% less than the laboratory commercial devices.


Resumen El dispositivo de electrohilado es actualmente empleado en la investigación de biomateriales, utilizado para sintetizar nanofibras que ofrecen un potencial para la manufactura de piel artificial y tejido muscular, vasos sanguíneos (implantes vasculares), componentes ortopédicos (hueso, cartílago y tendones/ligamentos) y componentes del sistema nervioso central y periférico. Las nanofibras producidas por electrohilado pueden ser usadas como andamios ideales para ingeniería de tejidos y liberación controlada de fármacos debido a que mimetizan las funciones de la matriz extracelular. El dispositivo de electrohilado de bajo costo fue diseñado y construido para al aprendizaje practico de estudiantes de licenciatura en la asignatura de Biomateriales de la carrera de Bioingeniería. La metodología incluye diseños CAD 3D, manufactura del gabinete de acrílico, diferentes colectores y fabricación de los andamios de nanofibras de Poli (vinil alcohol) para validar la correcta funcionalidad del sistema de electrohilado. El prototipo es un dispositivo accesible económicamente, su costo es un 95% más barato que los dispositivos de tipo comercial.

SELECTION OF CITATIONS
SEARCH DETAIL